Abstract
The existence of a true orbit near a numerically computed approximate orbit -- shadowing -- of autonomous system of ordinary differential equations is investigated. A general shadowing theorem for finite time, which guarantees the existence of shadowing in ordinary differential equations and provides error bounds for the distance between the true and the approximate orbit in terms of computable quantities, is proved. The practical use and the effectiveness of this theorem is demonstrated in the numerical computations of chaotic orbits of the Lorenz equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.