Abstract

We consider a class of maps from the unit square to itself preserving a contracting foliation and inducing a one-dimensional map having an absolutely continuous invariant measure. We show how the physical measure of those systems can be rigorously approximated with an explicitly given bound on the error with respect to the Wasserstein distance. We present a rigorous implementation of our algorithm using interval arithmetics, and the result of the computation on a non-trivial example of a Lorenz-like two-dimensional map and its attractor, obtaining a statement on its local dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.