Abstract

We calculate rigorous bounds on the Hausdorff dimension of Siegel disc boundaries for maps that are attracted to the critical fixed point of the renormalization operator. This is done by expressing (a piece of) the universal invariant curve of the fixed-point maps as the limit set of an iterated function system. In particular, we prove (by computer-assisted means) that the Hausdorff dimension of these boundary curves is less than 1.08523 for maps that are close enough to the fixed point and attracted to it under renormalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.