Abstract

We study the Foppl—von Karman theory for isotropically compressed thin plates in a geometrically linear setting, which is commonly used to model weak buckling of thin films. We consider generic smooth domains with clamped boundary conditions, and obtain rigorous upper and lower bounds on the minimum energy linear in the plate thickness σ . This energy is much lower than previous estimates based on certain dimensional reductions of the problem, which had lead to energies of order 1+σ (scalar approximation) or σ2/3 (two-component approximation).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.