Abstract

The Hashin-Shtrikman (HS) bounds define the range of bulk and shear moduli of an elastic composite, given the moduli of the constituents and their volume fractions. Recently, the HS bounds have been extended to the quasi-static moduli of composite viscoelastic media. Because viscoelastic moduli are complex, the viscoelastic bounds form a closed curve on the complex plane. We analyze these general viscoelastic bounds for a particular case of a porous solid saturated with a Newtonian fluid. In our analysis, for poroelastic media, the viscoelastic bounds for the bulk modulus are represented by a semicircle and a segment of the real axis, connecting formal HS bounds that are computed for an inviscid fluid. Importantly, viscoelastic bounds for poroelastic media turn out to be independent of frequency. However, because the bounds are quasi-static, the frequency must be much lower than Biot’s characteristic frequency. Furthermore, we find that the bounds for the bulk modulus are attainable (realizable). We also find that these viscoelastic bounds account for viscous shear relaxation and squirt-flow dispersion, but do not account for Biot’s global flow dispersion, because the latter strongly depends on inertial forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.