Abstract
This work is concerned with high order polynomial approximation of stable and unstable manifolds for analytic discrete time dynamical systems. We develop a posteriori theorems for these polynomial approximations which allow us to obtain rigorous bounds on the truncation errors via a computer assisted argument. Moreover, we represent the truncation error as an analytic function, so that the derivatives of the truncation error can be bounded using classical estimates of complex analysis. As an application of these ideas we combine the approximate manifolds and rigorous bounds with a standard Newton-Kantorovich argument in order to obtain a kind of result for connecting orbits between fixed points of discrete time dynamical systems. A feature of this method is that we obtain the transversality of the connecting orbit automatically. Examples of the manifold computation are given for invariant manifolds which have dimension between two and ten. Examples of the a posteriori error bounds and the analytic-shadowing argument for connecting orbits are given for dynamical systems in dimension three and six.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.