Abstract

The structure of rigor crossbridges was examined by comparing rigor crossbridges in fast muscle fibers from glycerol-extracted abdominal flexor muscle of crayfish with those in "natively decorated" thin filaments from the same muscle. Natively decorated thin filaments were obtained by dissociating the backbone of the myosin filaments of rigor myofibrils in 0.6 M KCl. Intact fibers were freeze-fractured, deep-etched, and rotary shadowed; isolated filaments were either negatively stained or freeze dried and rotary shadowed. The crossbridges on the natively decorated actin maintain the original spacing and the disposition in chevrons and double chevrons for several hours, indicating that no rearrangement of the actomyosin interactions occurs. Thus the crossbridges of the natively decorated filaments were formed within the geometrical constraints of the intact myofibril. The majority of crossbridges in the intact muscle have a triangular shape indicative of double-headed crossbridge. The triangular shape is maintained in the isolated filaments and negative staining resolves two heads in a single crossbridge. In the isolated filaments, crossbridges are attached at uniform acute angles. Unlike those in insect flight muscle (Taylor et al., 1984), lead and rear elements of the double chevron may be both double-headed. Deep-etched images reveal a twisted arrangement of subfilaments in the backbone of the thick filament.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call