Abstract

We investigate the long-time behavior of solutions to the isothermal Euler, Korteweg or quantum Navier Stokes equations, as well as generalizations of these equations where the convex pressure law is asymptotically linear near vacuum. By writing the system with a suitable time-dependent scaling we prove that the densities of global solutions display universal dispersion rate and asymptotic profile. This result applies to weak solutions defined in an appropriate way. In the exactly isothermal case, we establish the compactness of bounded sets of such weak solutions, by introducing modified entropies adapted to the new unknown functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.