Abstract

We deal with n-dimensional complete submanifolds $$M^n$$ immersed with nonzero parallel mean curvature vector field $$\mathbf{H}$$ either in the Euclidean space $${\mathbb {R}}^{n+p}$$ or in the Euclidean sphere $${\mathbb {S}}^{n+p}$$. In this setting, we establish sufficient conditions to guarantee that such a submanifold $$M^n$$ must be pseudo-umbilical, which means that $$\mathbf{H}$$ is an umbilical direction. Moreover, assuming a suitable lower bound for the Ricci curvature, we conclude that $$M^n$$ must be isometric to $${\mathbb {S}}^{n}$$, up to scaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.