Abstract
AbstractWe show that quasiconformal maps on many Carnot groups must be biLipschitz. In particular, this is the case for 2-step Carnot groups with reducible first layer. These results have implications for the rigidity of quasiisometries between negatively curved solvable Lie groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.