Abstract
We prove structure results for homogeneous spaces that support a non-constant solution to two general classes of equations involving the Hessian of a function and an invariant 2-tensor. We also consider trace-free versions of these systems. Our results generalize earlier rigidity results for gradient Ricci solitons and warped product Einstein metrics. In particular, our results apply to homogeneous gradient solitons of any invariant curvature flow and give a new structure result for homogeneous conformally Einstein metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.