Abstract
Given a Stein manifold XC which is homogeneous under a complex reductive Lie group GC, i.e., a complexification GC/KC of a compact homogeneous space G/K. Consider a relatively compact domain D which is invariant w.r.t. the compact real form G of the complex reductive Lie group in the Stein manifold XC. We find a relation between the automorphism group of the invariant domain D and isometric group of the compact homogeneous space G/K. When the compact homogeneous space G/K is isotropy irreducible, or even more general, we obtain a rigidity property of the automorphism groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.