Abstract

Here, we report the proof-of-concept for controlled aggregation in a binary colloidal system. The binary systems are studied by varying bond flexibility of only one species, while the other species' bonds remain fully flexible. By establishing the underlying relation between gelation and bond rigidity, we demonstrate how the interplay among bond flexibility, critical concentration, and packing volume fraction influenced the aggregation kinetics. Our result shows that rigidity in bonds increases the critical concentration for gels to be formed in the binary mixture. Furthermore, the average number of bonded neighbor analyses reveal the influence of bond rigidity both above and below critical concentrations and show that variation in bond flexibility in only one species alters the kinetics of aggregation of both species. This finding improves our understanding of colloidal aggregation in soft and biological systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.