Abstract
For any finite group G, we show that the 2-local G-equivariant stable homotopy category, indexed on a complete G-universe, has a unique equivariant model in the sense of Quillen model categories. This means that the suspension functor, homotopy cofiber sequences and the stable Burnside category determine all "higher order structure" of the 2-local G-equivariant stable homotopy category, such as the equivariant homotopy types of function G-spaces. The theorem can be seen as an equivariant version of Schwede's rigidity theorem at the prime 2.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.