Abstract

The bodies of herbaceous plants are slender, thin, and soft. These plants support their bodies through the action of turgor pressure associated with their internal water stores. The purpose of this study was to apply the principles of structural mechanics to clarify the underlying mechanism of rigidity control that is responsible for turgor pressure in plants and the reason behind the self-supporting ability of herbaceous plants. We modeled a plant a horizontally oriented thin-walled cylindrical cantilever with closed ends enclosing a cavity filled with water that is acted on by its own weight and by internal tension generated through turgor pressure. We derived an equation describing the plant’s consequent deflection, introducing a dimensionless parameter to express the decrease in deflection associated with the action of turgor pressure. We found that the mechanical and physical characteristics of herbaceous plants that would appear to be counter-productive from a superficial perspective increase the deflection decreasing effect of turgor pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call