Abstract

In this paper, we develop the concept of gradient r-Almost Newton-Ricci-Yamabe solitons (in brief, gradient r-ANRY solitons) immersed in a Riemannian manifold. We deduce the minimal and totally geodesic criteria for the hypersurface of a Riemannian manifold in terms of the gradient r-ANRY soliton. We also exhibit a Schur-type inequality and discuss the triviality of the gradient r-ANRY soliton in the case of a compact manifold. Finally, we demonstrate the completeness and noncompactness of the r-Newton-Ricci-Yamabe soliton on the hypersurface of the Riemannian manifold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.