Abstract

The dynamical model for the spacecraft with multiple solar panels and the cooperative controller for such spacecraft are studied in this paper. The spacecraft consists of a rigid platform and two groups of flexible solar panels, where solar panels could be driven to rotate by the connecting shaft. The flexible solar panel involves the use of the orthogonal polynomial in two directions to describe its elastic deformation. By using the Rayleigh–Ritz method, the characteristic equation is derived to obtain natural frequencies and modal shapes of the whole spacecraft. Then the discrete rigid-flexible coupled dynamical equation of the spacecraft is obtained by using the Hamiltonian principle. The equation involves the coupling of the attitude maneuver, solar panels’ driving and vibration suppression. These dynamical behaviors are addressed by the rigid-flexible coupled mode for the first time in this paper. Based on the dynamical equation, the cooperative control scheme is designed by combing the proportional-differential and robust control method. Numerical results show the accuracy of the present modelling method and the validation of the control strategy. The modal analysis implies the complex rigid-flexible coupled characteristic between the central platform and flexible solar panels. The proposed control scheme can maintain the attitude stability while solar panels are being driven, as well as the vibration suppression of flexible solar panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.