Abstract

It was shown by Babai in 1980 that almost all Steiner triple systems are rigid; that is, their only automorphism is the identity permutation. Those Steiner triple systems with the largest automorphism groups are the projective systems of orders . In this paper, we show that each such projective system may be transformed to a rigid Steiner triple system by at most n Pasch trades whenever .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.