Abstract

Glyphosate is widely used for weed control in the grape growing industry in southern Australia. The intensive use of glyphosate in this industry has resulted in the evolution of glyphosate resistance in rigid ryegrass. Two populations of rigid ryegrass from vineyards, SLR80 and SLR88, had 6- to 11-fold resistance to glyphosate in dose-response studies. These resistance levels were higher than two previously well-characterized glyphosate-resistant populations of rigid ryegrass (SLR77 and NLR70), containing a modified target site or reduced translocation, respectively. Populations SLR80 and SLR88 accumulated less glyphosate, 12 and 17% of absorbed glyphosate, in the shoot in the resistant populations compared with 26% in the susceptible population. In addition, a mutation within the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) where Pro106had been substituted by either serine or threonine was identified. These two populations are more highly resistant to glyphosate as a consequence of expressing two different resistance mechanisms concurrently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call