Abstract
Rigid polyurethane (PU) biocomposite foam had been successfully prepared by reacting palm oil-derived polyol (PO-p) with polymeric 4, 4-diphenylmethane diisocynate (p-MDI). Two types of alkali-treated oil palm fibres namely, empty fruit bunch (EFB) and palm pressed fibre (PPF) were used as fillers to be incorporated into PU foam at 2.5 wt%, 5 wt% and 7.5 wt% fibre loadings. The effects of these fibres on surface morphology, compressive strength and thermal transition behaviours of biocomposite foams were investigated. Fourier transform infra-red (FTIR) analysis confirmed the formation of urethane linkages (-NHCOO) in all samples at 1530-1540 cm−1. Differential scanning calorimetry (DSC) analysis showed the average melting peak temperature (Tm) of biocomposite foams (132°C) were lower Tm than that of pure PU foam (161.67°C) and the increase amount of fibres did not give significant effect on the Tm of both biocomposite systems. Meanwhile, the microscopic images of PU-PPF foams exhibited smaller and uniform cell size morphologies compared with the PU-EFB foams that had coarse and irregular cell sizes, especially at 7.5wt% EFB. These findings were manifested with the gradually increase of compressive strength of PU-PPF at all PPF ratios while for PU-EFB system, the compressive strength increased up to 5 wt% before reduced at 7.5 wt% loading. It was thought due to the residual oil in PPF fibre had plasticized the PU matrix to a little extent, thus helping the dispersion of PPF fibre across the matrix.Rigid polyurethane (PU) biocomposite foam had been successfully prepared by reacting palm oil-derived polyol (PO-p) with polymeric 4, 4-diphenylmethane diisocynate (p-MDI). Two types of alkali-treated oil palm fibres namely, empty fruit bunch (EFB) and palm pressed fibre (PPF) were used as fillers to be incorporated into PU foam at 2.5 wt%, 5 wt% and 7.5 wt% fibre loadings. The effects of these fibres on surface morphology, compressive strength and thermal transition behaviours of biocomposite foams were investigated. Fourier transform infra-red (FTIR) analysis confirmed the formation of urethane linkages (-NHCOO) in all samples at 1530-1540 cm−1. Differential scanning calorimetry (DSC) analysis showed the average melting peak temperature (Tm) of biocomposite foams (132°C) were lower Tm than that of pure PU foam (161.67°C) and the increase amount of fibres did not give significant effect on the Tm of both biocomposite systems. Meanwhile, the microscopic images of PU-PPF foams exhibited smaller and uniform...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.