Abstract

Advancing the knowledge of the biomechanics of the human body is essential to improve the clinical decision-makings of musculoskeletal disorders in the framework of in silico medicine. An impressive number of research projects focused on the development of rigid-body musculoskeletal models have been conducted over the world thanks to the new research directives. However, the application of these models in clinical practices remains a challenging issue. The objective of this review paper was to present the most current rigid-body musculoskeletal models of the human body systems and to analyze their trends and weaknesses for clinical applications. Then, recommendations were proposed for future researches toward fully clinical decision support. A systematic review process was performed. Well-selected studies related to the most current rigid-body 3D musculoskeletal models for each body system component (jaw, cervical spine, upper limbs, lumbar spine, and lower limbs) were summarized and explored. Trends in rigid musculoskeletal modeling are highlighted as personalization, new imaging techniques for specific joint kinematics, and computational efficiency. Weaknesses are highlighted as modeling assumptions, use of generic model, lack of modeling consensus, model validation, and parameter and model uncertainties. Future directions related to joint and muscle modeling, neuro-musculoskeletal modeling, model validation, data and model uncertainty quantification are recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.