Abstract

We investigate Fuchsian equations arising in the context of 2-dimensional conformal field theory (CFT) and we apply the Katz theory of Fucshian rigid systems to solve some of these equations. We show that the Katz theory provides a precise mathematical framework to answer the question whether the fusion rules of degenerate primary fields are enough for determining the differential equations satisfied by their correlation functions. We focus on the case of W3 Toda CFT: we argue that the differential equations arising for four-point conformal blocks with one n-th level semi-degenerate field and a fully-degenerate one in the fundamental sl3 representation are associated to Fuchsian rigid systems. We show how to apply Katz theory to determine the explicit form of the differential equations, the integral expression of solutions and the monodromy group representation. The theory of twisted homology is also used in the analysis of the integral expression. This approach allows to construct the corresponding fusion matrices and to perform the whole bootstrap program: new explicit factorization of W3 correlation functions as well shift relations between structure constants are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.