Abstract

Several generations of phenylenevinylene dendrons, covalently attached to a C(60) core, have been developed as synthetic model systems with hierarchical, fine-tuned architectures. End-capping of these dendritic spacers with dibutylaniline or dodecyloxynaphthalene, as antennas/electron donors, yielded new donor-bridge-acceptor ensembles in which one, two, or four donors are allocated at the peripheral positions of the well-defined dendrons, while the electron accepting fullerene is placed at the focal point of the dendron. On the basis of our cyclic voltammetry experiments, which disclose a single anodic oxidation and several cathodic reduction processes, we rule out significant, long-range couplings between the fullerene core and the end-standing donors in their ground-state configuration. Photophysical investigations, on the other hand, show that upon photoexcitation an efficient and rapid transfer of singlet excited-state energy (6 x 10(10) to 2.5 x 10(12) s(-1)) controls the reactivity of the initially excited antenna portion. Spectroscopic and kinetic evidence suggests that yet a second contribution, that is, an intramolecular electron-transfer, exists, affording C(60)(.-) -dendron(.+) with quantum yields (Phi) as high as 0.76 and lifetimes (tau) that are on the order of hundreds of nanoseconds (220-725 ns). Variation of the energy gap modulates the interplay of these two pathways (i.e., competition or sequence between energy and electron transfer).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.