Abstract

All of the point groups common to organic chemistry except two are illustrated by known compounds that are rigid [2.2]paracyclophane derivatives. Examples are given of transannular directing effects by acetyl, nitro, and acetoxyl substituents attached to [2.2]paracyclophane. In bromination or chloromethylation, proton loss of a sigma complex is rate-determining, and the oxygens already in the molecule remove the proton being substituted. The synthesis of [2.2.2](1,2,4)cyclophane and [3.2.2](1,2,5)cyclophane, and their unusual chemical properties are described. Transannular hydride shifts out of methyl groups due to proximity effects are reported. Torsional racemizations and epimerizations of [2.2]paracyclophane derivatives are reviewed. The diradical intermediates formed have been intercepted by either H· donors, or by addition to substituted olefins. To account for the stereochemical course of addition and substitution reactions in the side-chains of [2.2]- and [4,2]paracyclophanes, new types of bridged carbonium ions are suggested. Conformational equilibria in the four-carbon side-chain of [4.2]paracyclophane derivatives are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call