Abstract
Synthetic anion exchange membranes (AEMs) usually suffer from low conductivity, bad alkaline stability and poor dimensional stability. Constructing efficient ion transport channels is considered to be one of the most effective ways for preparing the AEMs with the high conductivity and low swelling ratio. Herein we demonstrate a facile strategy to achieve this goal via using the rigid crosslinkers to expend the interchain spacing of polymer chains. Three crosslinkers are chose to modify poly (ether ketone) (PEK) AEMs. The AEMs with rigid crosslinkers have more efficient ion transport channels and thus show both higher water uptake and higher ionic conductivity, compared with the AEM with the flexible crosslinker. Especially, the hydroxide conductivity of the AEM increases from 63.2 to 110.3 mS cm−1 at 80 °C when the short flexible crosslinker is replaced by the long rigid crosslinker. Meanwhile, the swelling ratios (SR) are less than 25%. The rigid crosslinkers should be beneficial to construct efficient ion channel and overcome the trade-off relation between the ionic conductivity and dimensional stability of the synthetic AEMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.