Abstract

We study the nature of the frictional jamming transition within the framework of rigidity percolation theory. Slowly sheared frictional packings are decomposed into rigid clusters and floppy regions with a generalization of the pebble game including frictional contacts. Our method suggests a second-order transition controlled by the emergence of a system-spanning rigid cluster accompanied by a critical cluster size distribution. Rigid clusters also correlate with common measures of rigidity. We contrast this result with frictionless jamming, where the rigid cluster size distribution is noncritical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call