Abstract

Rigid-body knee models have gained popularity thanks to computational speed and ease of setup compared to finite element models—showing exciting potential for clinical patient-specific models in the future. However, Rigid-body studies in general have encountered difficulty in modeling cartilage and especially meniscus material properties, often relying on computationally costly optimization techniques. This paper presents two new methods to alleviate the difficulty—one to define model contact pressure and one to define meniscus internal forces—and is the first to our knowledge to use experimental pressure-strain curves from the literature to simulate cartilage and meniscus behavior in a rigid body model. This paper describes the methodology to derive the proof of concept model and preliminary results from a gait simulation based on ISO 14243-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.