Abstract

Herein we report the synthesis and optoelectronic characterisation of three deep blue-emitting cationic iridium complexes, of the form [Ir(dFppy)(2)(N^N)]PF(6), bearing biimidazole-type N^N ancillary ligands (dFppyH = 2-(2,4-difluorophenyl)pyridine). Complex 1 contains the parent biimidazole, biim, while 2 contains a dimethylated analog, dMebiim, and 3 contains an ortho-xylyl-tethered biimidzole, o-xylbiim. We explore a strategy of tethering the biimidazole in order to rigidify the complex and increase the photoluminescent quantum yield, culminating in deep blue (λ(max): 457 nm in MeOH at 298 K) ligand-centered emission with a very high photoluminescent quantum yield of 68% and microsecond emission lifetime. Density functional theory calculations elucidate the origin of such disparate excited state kinetics across this series, especially in light of virtually identical optoelectronic properties observed for these compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call