Abstract

Multiview image sequence processing has been the focus of considerable attention in recent literature. This paper presents an efficient technique for object-based rigid and non-rigid 3D motion estimation, applicable to problems occurring in multiview image sequence coding applications. More specifically, a neural network is formed for the estimation of the rigid 3D motion of each object in the scene, using initially estimated 2D motion vectors corresponding to each camera view. Non-linear error minimization techniques are adopted for neural network weight update. Furthermore, a novel technique is also proposed for the estimation of the local non-rigid deformations, based on the multiview camera geometry. Experimental results using both stereoscopic and trinocular camera setups illustrate and evaluate the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.