Abstract

Bismuth organometal halide perovskites have recently been investigated as potential substitutes for lead perovskite solar-cell absorbers because of their lower toxicity. However, the narrowing of the band gap remains a crucial challenge for their practical application. All known Bi-based perovskites have large band gaps, thereby affording weak visible-light absorption. This study concerns a novel, lead-free, pseudo-3 D perovskite optoelectronic material, (MV)BiI5 (MV2+ =methyl viologen). The pseudo-3 D metal-halogen perovskite-like structure is constructed by connecting [BiI5 ] 2+ units via I⋅⋅⋅I contacts. MV, as a rigid organic amine, is located at the center of each parallelepiped to balance the charge and stabilize the structure. (MV)BiI5 has a narrow band gap of 1.48 eV and a better photoresponse than (MV)BiCl5 with a 1 D structure. (MV)BiI5 is the first Bi-based perovskite compound with a band gap energy comparable with (CH3 NH3 )PbI3 , which is encouraging for optoelectronic applications. This research will open a potential pathway for the design of pseudo-3 D Bi-based perovskites with performances comparable with APbX3 absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.