Abstract

Background Retinoic acid-inducible gene-I (RIG-I) has crucial effects on various cancers, while RIG-I's detailed roles and mechanism in colorectal cancer (CRC) are uncovered. Methods qRT-PCR was used to detect the expression of RIG-I in CRC, adjacent nontumor specimens, and five cell lines. CCK-8, colony formation, and flow cytometry assays were conducted to study CRC cell viabilities. Extracellular acidification rates, lactate analysis, and ATP analysis were conducted to study the cell viabilities and glucose metabolism of CRC cells. Western blot is used to determine the proteins of NF-κBp65 in the nucleus and cytoplasm. Results This study revealed the upregulation of RIG-I in CRC tissues and cells and that high RIG-I expression was correlated with poor prognosis of CRC patients. In addition, silencing RIG-I inhibited cell viability as well as colony formation and promoted cell apoptosis in CRC cells, while RIG-I knockdown suppressed transplanted tumor growth and facilitated apoptosis in nude mice. Moreover, silencing RIG-I inhibited glucose metabolism by decreasing extracellular acidification rate, lactate production, adenosine triphosphate, and content of hypoxia-inducible factor 1α and pyruvate kinase isoform. 2.2-Deoxy-d-glucose, a glycolysis inhibitor, reduced the growth of CRC cells and promoted apoptosis in vitro and in vivo. In addition, RIG-I knockdown decreased NF-κB nuclear translocation. Besides, inhibiting NF-κB effectively eliminated RIG-I overexpression roles in cell viability and glucose metabolism in CRC cells. Conclusion In summary, this study revealed that RIG-I mediated CRC cell proliferation, apoptosis, and glucose metabolism at least partly by NF-κB signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call