Abstract
Sense of agency is the experience of control over one's own action and its consequent outcomes. The perceived time between a motor action and its consequent sensory outcomes (e.g., a flash of light) is shorter for a voluntary than involuntary action, a phenomenon known as intentional binding, which has been used extensively as an implicit measure of sense of agency. We developed a novel task in which participants had to respond whether a flash appeared immediately or with a delay relative to their voluntary action. We found that under high, but not low, uncertainty about the perceived time between voluntary finger movement and a subsequent flash of light, a prediction signal was generated in the right inferior parietal lobule prior to motor action. This prediction signal was linked to the emergence of a sudden insight solution (colloquially referred to as "Aha!" moment) in the right superior temporal gyrus prior to response. Single-trial event-related potential analysis revealed a reliable correlation between amplitudes of premotor and preresponse activities. The results suggest the existence of a predictive mechanism under high uncertainty about the timing of the sensory consequences of a voluntary motor action. The results are in line with the optimal cue integration theory of sense of agency, which states that both predictive and postdictive agency cues are crucial for the formation of sense of agency and the weight of each type of cue (predictive or postdictive) depends on their availability and reliability.NEW & NOTEWORTHY According to the optimal cue integration theory, the formation of sense of agency relies on both predictive and postdictive agency cues and how they are weighted based on their availability and reliability. Using a novel paradigm, we show for the first time a possible existence of a prediction signal prior to voluntary movement, which appears when postdictive agency cues (i.e., the judgment of the time between voluntary movement and a subsequent flash) are not reliable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.