Abstract

The objective of this study was to analyze dynamic aspects of right hemisphere implementation in processing visual images. Two tachistoscopic, divided visual field experiments were carried out on a partial split-brain patient with no damage to the right hemisphere. In the first experiment, image generation performance for letters presented in the right visual field (/left hemisphere) was undeniably optimal. In the left visual field (/right hemisphere), performance was no better than chance level at first, but then improved dramatically across stimulation blocks, in each of five successive sessions. This was interpreted as revealing the progressive spontaneous activation of the right hemisphere"s competence not shown initially. The aim of the second experiment was to determine some conditions under which this pattern was obtained. The experimental design contrasted stimuli (words and pictures) and representational activity (phonologic and visuo-imaged processing). The right visual field (/left hemisphere: LH) elicited higher performance than the left visual field (/right hemisphere, RH) in the three situations where verbal activity was required. No superiority could be found when visual images were to be generated from pictures: parallel and weak improvement of both hemispheres was observed across sessions. Two other patterns were obtained: improvement in RH performance (although LH performance remained superior) and an unexpectedly large decrease in RH performance. These data are discussed in terms of RH cognitive competence and hemisphere implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call