Abstract

A priming experiment, with normal university students as subjects, was used to investigate whether the right cerebral hemisphere contributes to the comprehension of low-imagery words. Each hemisphere's access to semantic representations of low-imagery words was gauged by comparing responses to low-imagery targets preceded by associated low-imagery primes (e.g., BELIEF-IDEAL) with responses to the same targets when they were preceded by unrelated primes (e.g., FATE-IDEAL). All primes and targets were independently projected to the left or right visual fields (LVF or RVF), and temporally separated by a stimulus onset asynchrony of 250 ms. There was a clear RVF advantage in response speed and accuracy measures, confirming the left hemisphere's advantage in processing low-imagery words. Nonetheless, the priming effects provided evidence that the right hemisphere contributes to the comprehension of low-imagery words, as primes projected to the RVF equally facilitated responses to associated targets subsequently appearing in either visual field. In contrast, primes directed to the LVF did not facilitate responses to associated targets projected to the LVF or RVF. The results suggest that low-imagery words projected to the left hemisphere activated low-imagery associates in both hemispheres to an equivalent degree, whereas low-imagery primes directed to the right hemisphere failed to activate low-imagery associates in either hemisphere. Like Kounios and Holcomb's (1994) study of event-related response potentials evoked by abstract and concrete words, the findings indicate that while the left hemisphere is the primary processor of low-imagery/abstract words, the right hemisphere plays a subsidiary role in the comprehension of these words.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call