Abstract
Image processing algorithms implemented using custom hardware or FPGAs of can be orders-of-magnitude more energy efficient and performant than software. Unfortunately, converting an algorithm by hand to a hardware description language suitable for compilation on these platforms is frequently too time consuming to be practical. Recent work on hardware synthesis of high-level image processing languages demonstrated that a single-rate pipeline of stencil kernels can be synthesized into hardware with provably minimal buffering. Unfortunately, few advanced image processing or vision algorithms fit into this highly-restricted programming model. In this paper, we present Rigel, which takes pipelines specified in our new multi-rate architecture and lowers them to FPGA implementations. Our flexible multi-rate architecture supports pyramid image processing, sparse computations, and space-time implementation tradeoffs. We demonstrate depth from stereo, Lucas-Kanade, the SIFT descriptor, and a Gaussian pyramid running on two FPGA boards. Our system can synthesize hardware for FPGAs with up to 436 Megapixels/second throughput, and up to 297x faster runtime than a tablet-class ARM CPU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.