Abstract
Retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are paralogous receptors for viral double-stranded RNA (dsRNA) with divergent specificity. We have previously shown that MDA5 forms filaments upon viral dsRNA recognition and that this filament formation is essential for interferon signal activation. Here, we show that while RIG-I binds to a dsRNA end as a monomer in the absence of ATP, it assembles in the presence of ATP into a filament that propagates from the dsRNA end to the interior. Furthermore, RIG-I filaments directly stimulate mitochondrial antiviral signaling (MAVS) filament formation without any cofactor, such as polyubiquitin chains, and forced juxtaposition of the isolated signaling domain of RIG-I, as it would be in the filament, is sufficient to activate interferon signaling. Our findings thus define filamentous architecture as a common yet versatile molecular platform for divergent viral RNA detection and proximity-induced signal activation by RIG-I and MDA5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.