Abstract

BackgroundThe TRH/TRH-R1 receptor signaling pathway within the neurons of the dorsal vagal complex is an important mediator of the brain-gut axis. Mental health and protection from a variety of neuropathologies, such as autism, Attention Deficit Hyperactivity Disorder, Alzheimer’s and Parkinson’s disease, major depression, migraine and epilepsy are influenced by the gut microbiome and is mediated by the vagus nerve. The antibiotic rifaximin (RF) does not cross the gut-blood barrier. It changes the composition of the gut microbiome resulting in therapeutic benefits for traveler’s diarrhea, hepatic encephalopathy, and prostatitis. TRH and TRH-like peptides, with the structure pGlu-X-Pro-NH2, where “X” can be any amino acid residue, have reproduction-enhancing, caloric-restriction-like, anti-aging, pancreatic-β cell-, cardiovascular-, and neuroprotective effects. TRH and TRH-like peptides occur not only throughout the CNS but also in peripheral tissues. To elucidate the involvement of TRH-like peptides in brain-gut-reproductive system interactions 16 male Sprague–Dawley rats, 203 ± 6 g, were divided into 4 groups (n = 4/group): the control (CON) group remained on ad libitum Purina rodent chow and water for 10 days until decapitation, acute (AC) group receiving 150 mg RF/kg powdered rodent chow for 24 h providing 150 mg RF/kg body weight for 200 g rats, chronic (CHR) animals receiving RF for 10 days; withdrawal (WD) rats receiving RF for 8 days and then normal chow for 2 days.ResultsSignificant changes in the levels of TRH and TRH-like peptides occurred throughout the brain and peripheral tissues in response to RF. The number of significant changes in TRH and TRH-like peptide levels in brain resulting from RF treatment, in descending order were: medulla (16), piriform cortex (8), nucleus accumbens (7), frontal cortex (5), striatum (3), amygdala (3), entorhinal cortex (3), anterior (2), and posterior cingulate (2), hippocampus (1), hypothalamus (0) and cerebellum (0). The corresponding ranking for peripheral tissues were: prostate (6), adrenals (4), pancreas (3), liver (2), testis (1), heart (0).ConclusionsThe sensitivity of TRH and TRH-like peptide expression to RF treatment, particularly in the medulla oblongata and prostate, is consistent with the participation of these peptides in the therapeutic effects of RF.

Highlights

  • The thyrotropin releasing hormone (TRH)/TRH-R1 receptor signaling pathway within the neurons of the dorsal vagal complex is an important mediator of the brain-gut axis

  • The TRH/TRH-R1 receptor signaling pathway is an important mediator of brain-gut axis communication via the brain medulla oblongata and its associated TRH synthesizing neurons within the raphe pallidus, raphe obscura, and parapyramidal regions [10]

  • Animal was handled for 10 min per day for one month and transferred from the Veterinary Medical Unit to the laboratory 12 h before the start of experiments to minimize the stress of a novel environment” [11]

Read more

Summary

Introduction

The TRH/TRH-R1 receptor signaling pathway within the neurons of the dorsal vagal complex is an important mediator of the brain-gut axis. Mental health and protection from a variety of agingrelated neurodegenerative disorders, such as autism, Attention Deficit Hyperactivity Disorder, Alzheimer’s and Parkinson’s disease, major depression, migraine and epilepsy, involve the gut microbiome and is mediated by the vagus nerve [1,2,3,4]. This is most evident in the behavioral abnormalities and GI symptoms of germ-free (GF). TRH and TRH-like peptides, with the structure pGlu-XPro-NH2 where “X” can be any amino acid residue, have reproductive, antidepressant, anxiolytic, analeptic, anorexic, and anti-aging effects [11]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.