Abstract

Presents a recursive inductive learning scheme that is able to acquire hand pose models in the form of disjunctive normal form expressions involving multivalued features. Based on an extended variable-valued logic, our rule-based induction system is able to abstract compact rule sets from any set of feature vectors describing a set of classifications. The rule bases which satisfy the completeness and consistency conditions are induced and refined through five heuristic strategies. A recursive induction learning scheme in the RIEVL algorithm is designed to escape local minima in the solution space. A performance comparison of RIEVL with other inductive algorithms, ID3, NewID, C4.5, CN2, and HCV, is given in the paper. In the experiments with hand gestures, the system produced the disjunctive normal form descriptions of each pose and identified the different hand poses based on the classification rules obtained by the RIEVL algorithm. RIEVL classified 94.4 percent of the gesture images in our testing set correctly, outperforming all other inductive algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.