Abstract

The incorporation of magnesium in the synthetic apatite has been associated with biomineralization process and osteoporosis therapy in human and animals. Magnesium easily replaces calcium in the apatite lattice and influences or controls the hydroxyapatite crystallization processes. In this work, Mg-substituted calcium deficient apatite, with Mg/Ca ratio = 0.1, 0.15 and 0.2 were synthesized by precipitation method. Then, sintered at 1000 oC and compared with a commercial product labeled as tricalcium phosphate sintered at the 1000 oC. The sintered products showed tricalcium phosphate (β-TCP) structure. The Mg2+ substitution in the Ca(4) and Ca(5) sites of β-TCP and the lattice parameter changes were estimated using the Rietveld method. Using this method, the formulas Ca2.73(Mg0.27)(PO4)2, Ca2.71(Mg0.29)(PO4)2 and Ca2.70(Mg0.23Mg0.07)(PO4)2 were calculated for the samples with Mg/Ca ratio = 0.1, 0.15 and 0.2 respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.