Abstract

AbstractX-ray diffraction patterns of oriented mounts of clay minerals are often used in clay mineralogy for qualitative and quantitative purposes. Fequently occurring stacking defects, in particular, can be characterized by this technique. Modeling of these diffraction profiles has become an important tool in obtaining structural information about the nature of stacking order. Manual matching of calculated and observed patterns is time consuming and user dependent. Automatic refinement procedures are, therefore, desirable. An improved approach for the treatment of disordered layer structures within a Rietveld refinement is presented here. The recursive calculation of structure factors, similar to that of the simulation program DIFFaX, was introduced in the Rietveld code BGMN. Complete implementation is formulated within the interpreter language of the Rietveld code and is transparent as well as flexible. Such a method has opened the application of Rietveld refinement to patterns of oriented mounts where only basal reflections of stacking disordered structures were recorded. The DIFFaX code was used to simulate basal reflections of illite-smectite mixed layers (I-S) with different ratios of illitic and smectitic layers and with different degrees of long-range ordering (Reichweite). Rietveld refinements with these simulated patterns were used to evaluate the application of this new approach. Several I-S with different degrees of ordering were also chosen as tests for the refinement of basal reflections. The samples were prepared as standard airdried and ethylene glycol-solvated, oriented specimens. Realistic structural parameters were obtained for the composition and ordering of the I-S.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call