Abstract

We prove that the Atiyah-Singer Dirac operator ${\mathrm D}_{\mathrm g}$ in ${\mathrm L}^2$ depends Riesz continuously on ${\mathrm L}^{\infty}$ perturbations of complete metrics ${\mathrm g}$ on a smooth manifold. The Lipschitz bound for the map ${\mathrm g} \to {\mathrm D}_{\mathrm g}(1 + {\mathrm D}_{\mathrm g}^2)^{-\frac{1}{2}}$ depends on bounds on Ricci curvature and its first derivatives as well as a lower bound on injectivity radius. Our proof uses harmonic analysis techniques related to Calder\'on's first commutator and the Kato square root problem. We also show perturbation results for more general functions of general Dirac-type operators on vector bundles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call