Abstract
We consider an infinite sequence of radial wave equations obtained by the separation of variables in the spherical coordinates from the 3-dimensional damped wave equation with spatially nonhomogeneous spherically symmetric coefficients. Our main objects of interest are the nonselfadjoint operators in the energy spaces of 2-component initial data, which are the dynamics generators for the systems governed by the aforementioned equations and nonselfadjoint boundary conditions on the sphere $r=a$. Our main result is the fact that the sets of the root vectors (generalized eigenvectors) of these operators form Riesz bases in the corresponding energy spaces. This result has several applications. The first one is the fact that the aforementioned operators are spectral in the sense of N. Dunford, and, therefore, we have a new nontrivial class of spectral operators. Another application is a precise estimate on the rate of the energy decay, which is equal to the spectral abscissa of the corresponding semigroup. Finally, we use the results of our spectral analysis to formulate the solutions of several problems in control theory of systems governed by damped wave equations (the proofs are given in another work).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.