Abstract

We develop Riemannian Stein Variational Gradient Descent (RSVGD), a Bayesian inference method that generalizes Stein Variational Gradient Descent (SVGD) to Riemann manifold. The benefits are two-folds: (i) for inference tasks in Euclidean spaces, RSVGD has the advantage over SVGD of utilizing information geometry, and (ii) for inference tasks on Riemann manifolds, RSVGD brings the unique advantages of SVGD to the Riemannian world. To appropriately transfer to Riemann manifolds, we conceive novel and non-trivial techniques for RSVGD, which are required by the intrinsically different characteristics of general Riemann manifolds from Euclidean spaces. We also discover Riemannian Stein's Identity and Riemannian Kernelized Stein Discrepancy. Experimental results show the advantages over SVGD of exploring distribution geometry and the advantages of particle-efficiency, iteration-effectiveness and approximation flexibility over other inference methods on Riemann manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.