Abstract

This article develops identification methods for linear continuous-time symmetric systems, such as electrical network systems, multiagent network systems, and temperature dynamics in buildings. To this end, we formulate three system identification problems for the corresponding discrete-time systems. The first is a least-squares problem in which we wish to minimize the sum of squared errors between the true and model outputs on the product manifold of the manifold of symmetric positive-definite matrices and two Euclidean spaces. In the second problem, to reduce the search dimensions, the product manifold is replaced with the quotient set under a specified group action by the orthogonal group. In the third problem, the manifold of symmetric positive-definite matrices in the first problem is replaced by the manifold of matrices with only positive diagonal elements. In particular, we examine the quotient geometry in the second problem. We propose Riemannian conjugate gradient methods for the three problems, and select initial points using a popular subspace method. The effectiveness of our proposed methods is demonstrated through numerical simulations and comparisons with the Gauss–Newton method, which is one of the most popular approach for solving least-squares problems.

Highlights

  • M ANY important systems involved in electrical networks [1]–[3], multiagent networks [4], [5], and tempe-Manuscript received December 19, 2018; revised May 8, 2019, July 31, 2019, and November 13, 2019; accepted November 27, 2019

  • We developed identification methods for linear continuoustime symmetric systems using Riemannian optimization

  • We examined the quotient geometry in one problem in depth

Read more

Summary

Introduction

M ANY important systems involved in electrical networks [1]–[3], multiagent networks [4], [5], and tempe-. Manuscript received December 19, 2018; revised May 8, 2019, July 31, 2019, and November 13, 2019; accepted November 27, 2019. Date of publication December 3, 2019; date of current version October 21, 2020. T. Damm is with the Department of Mathematics, University of Kaiserslautern, Kaiserslautern 67663, Germany

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.