Abstract
We prove that any metric of positive scalar curvature on a manifold X extends to the trace of any surgery in codim > 2 on X to a metric of positive scalar curvature which is product near the boundary. This provides a direct way to construct metrics of positive scalar curvature on compact manifolds with boundary. We also show that the set of concordance classes of all metrics with positive scalar curvature on S n is a group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.