Abstract

Recurrent neural networks are powerful models for sequential data, able to represent complex dependencies in the sequence that simpler models such as hidden Markov models cannot handle. Yet they are notoriously hard to train. Here we introduce a training procedure using a gradient ascent in a Riemannian metric: this produces an algorithm independent from design choices such as the encoding of parameters and unit activities. This metric gradient ascent is designed to have an algorithmic cost close to backpropagation through time for sparsely connected networks. We use this procedure on \emph{gated leaky neural networks} (GLNNs), a variant of recurrent neural networks with an architecture inspired by finite automata and an evolution equation inspired by continuous-time networks. GLNNs trained with a Riemannian gradient are demonstrated to effectively capture a variety of structures in synthetic problems: basic block nesting as in context-free grammars (an important feature of natural languages, but difficult to learn), intersections of multiple independent Markov-type relations, or long-distance relationships such as the distant-XOR problem. This method does not require adjusting the network structure or initial parameters: the network used is a sparse random graph and the initialization is identical for all problems considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.