Abstract

Given a compact manifold M and a Riemannian manifold N of bounded geometry, we consider the manifold Imm(M,N) of immersions from M to N and its subset Immμ(M,N) of those immersions with the property that the volume-form of the pull-back metric equals μ. We first show that the non-minimal elements of Immμ(M,N) form a splitting submanifold. On this submanifold we consider the Levi-Civita connection for various natural Sobolev metrics, we write down the geodesic equation for which we show local well-posedness in many cases. The question is a natural generalization of the corresponding well-posedness question for the group of volume-preserving diffeomorphisms, which is of importance in fluid mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.