Abstract

We study some Riemannian metrics on the space of regular smooth curves in the plane, viewed as the orbit space of maps from the circle to the plane modulo the group of diffeomorphisms of the circle, acting as reparameterizations. In particular we investigate the L^2 inner product with respect to 1 plus curvature squared times arclength as the measure along a curve, applied to normal vector field to the curve. The curvature squared term acts as a sort of geometric Tikhonov regularization because, without it, the geodesic distance between any 2 distinct curves is 0, while in our case the distance is always positive. We give some lower bounds for the distance function, derive the geodesic equation and the sectional curvature, solve the geodesic equation with simple endpoints numerically, and pose some open questions. The space has an interesting split personality: among large smooth curves, all its sectional curvatures are positive or 0, while for curves with high curvature or perturbations of high frequency, the curvatures are negative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.