Abstract

It is shown that the structural theory of Molino for Riemannian foliations on compact manifolds and complete Riemannian manifolds may be generalized to a Riemannian foliations with Ehresmann connection. Within this generalization there are no restrictions on the codimension of the foliation and on the dimension of the foliated manifold. For a Riemannian foliation (M,F) with Ehresmann connection it is proved that the closure of any leaf forms a minimal set, the family of all such closures forms a singular Riemannian foliation (M,F¯¯¯¯). It is shown that in M there exists a connected open dense F¯¯¯¯-saturated subset M0 such that the induced foliation (M0,F¯¯¯¯|M0) is formed by fibers of a locally trivial bundle over some smooth Hausdorff manifold. The equivalence of some properties of Riemannian foliations (M,F) with Ehresmann connection is proved. In particular, it is shown that the structural Lie algebra of (M,F) is equal to zero if and only if the leaf space of (M,F) is naturally endowed with a smooth orbifold structure. Constructed examples show that for foliations with transversally linear connection and for conformal foliations the similar statements are not true in general.

Highlights

  • It is shown that the structural theory of Molino for Riemannian foliations on compact manifolds and complete Riemannian manifolds may be generalized to a Riemannian foliations with Ehresmann connection

  • Ehresmann connection it is proved that the closure of any leaf forms a minimal set, the family of all such closures forms a singular Riemannian foliation (M, F )

  • It is shown that the structural Lie algebra of (M, F ) is equal to zero if and only if the leaf space of (M, F ) is naturally endowed with a smooth orbifold structure

Read more

Summary

Ââåäåíèå

Èññëåäîâàíèþ ðèìàíîâûõ ñëîåíèé ïîñâÿùåíû ìíîãî÷èñëåííûå ñòàòüè è ìîíîãðàôèè ðÿäà àâòîðîâ. Îïðåäåëåíèå 1.2 Ñëîé L ñëîåíèÿ (M, F ) êîðàçìåðíîñòè q íàçûâàåòñÿ ëîêàëüíî óñòîé÷èâûì (â ñìûñëå Ýðåñìàíà è Ðèáà), åñëè ñóùåñòâóåò ñåìåéñòâî íàñûùåííûõ îêðåñòíîñòåé {Wk|k ∈ N}, îáëàäàþùåå ñëåäóþùèìè ñâîéñòâàìè: 1) ñóùåñòâóåò òàêàÿ ñóáìåðñèÿ f1 : W1 → L, ÷òî äëÿ ëþáîãî k ∈ N òðîéêà (Wk, fk, L), ãäå fk = f 1|Wk ëîêàëüíî òðèâèàëüíîå ðàññëîåíèå ñî ñòàíäàðòíûì ñëîåì q-ìåðíûì äèñêîì Dq, ïðè÷åì ñëîè ýòîãî ðàññëîåíèÿ òðàíñâåðñàëüíû ñëîÿì ñëîåíèÿ (Wk, F |Wk ); 2) äëÿ ïðîèçâîëüíîé òî÷êè x. Ç à ì å ÷ à í è å 1.1 Îòìåòèì, ÷òî åñëè ïðîñòðàíñòâî ñëîåâ M/F ñëîåíèÿ (M, F ), äîïóñêàþùåãî ñâÿçíîñòü Ýðåñìàíà, åñòåñòâåííûì îáðàçîì íàäåëÿåòñÿ ñòðóêòóðîé ãëàäêîãî q-ìåðíîãî îðáèôîëäà, ïðè÷åì ôàêòîð-îòîáðàæåíèå M → M/F ÿâëÿåòñÿ ñóáìåðñèåé îðáèôîëäîâ, òî ýòî ñëîåíèå ðèìàíîâî, âñå åãî ñëîè çàìêíóòû è ëîêàëüíî óñòîé÷èâû, à ãðóïïû ãîëîíîìèè êîíå÷íû.

Ðèìàíîâû ñëîåíèÿ
Ñëîåíîå ðàññëîåíèå íàä ðèìàíîâûì ñëîåíèåì
Ñâÿçíîñòü Ýðåñìàíà äëÿ ñëîåíèÿ
Ñëîåíûå è òðàíñâåðñàëüíûå âåêòîðíûå ïîëÿ
Òðàíñâåðñàëüíî ïàðàëëåëèçóåìûå ñëîåíèÿ ñî ñâÿçíîñòüþ Ýðåñìàíà
Ïðèìåðû
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call