Abstract
Given a finite morphism $$\varphi :Y\rightarrow X$$ of quasi-smooth Berkovich curves over a complete, non-archimedean, nontrivially valued algebraically closed field k of characteristic 0, we prove a Riemann–Hurwitz formula relating their Euler–Poincare characteristics (calculated using De Rham cohomology of their overconvergent structure sheaf). The main tools are p-adic Runge’s theorem together with valuation polygons of analytic functions. Using the results obtained, we provide another point of view on Riemann–Hurwitz formula for finite morphisms of curves over algebraically closed fields of positive characteristic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.